Central Sierra
University of California
Central Sierra

Forest Research and Outreach Blog

Leaders from the Taiwan Forestry Research Institute Meet with UCCE Foresters

Recently three leaders from the Taiwan Forestry Research Institute (TFRI), a division of Tawain’s Council of Agriculture (COA), traveled to Northern California to meet with UCCE foresters to gain information about our outreach program that they might be able to apply in Taiwan. Dr. Yue-Hsing “Star” Huang, Director of TFRI; Dr. Meng-Ling Wu, Department Chief of Forest Protection; Dr. Gene-Sheng Tung, Assistant Researcher in the Department of Forest Protection spent three days at UC Berkeley, UC Berkeley’s Blodgett Forest Research Station, South Lake Tahoe, and in Quincy and Plumas Counties exploring extension projects and learning how UCCE Foresters initiate and maintain relationships with landowners, managers, conservation groups, and policy makers.

TFRI is composed of 6 research centers across Taiwan and employs over 120 scientists and over 200 staff and technicians. Taiwan has rich ecosystems in a tropical climate, with over 55% of their island covered by forests. TFRI is specifically focused in conducting research on new management practices, sustainable forestry, consulting, and operating several example forests and botanical gardens. 99.8% of Taiwan’s timber is currently imported because of the country’s strict management policies, so TFRI is particularly focused on successful management techniques to harvest their own timber and boost their economy.

In addition, with over 50,000 species in Taiwan, TFRI is interested in researching biology and has an impressive database of species, as well as a forest tree seed bank. The scientists and researchers at TFRI are aware of the need to not only focus on research, but also develop an extension program that would allow them to share their research and educate others.

While in Berkeley, the visitors from TFRI had an opportunity to meet with UCCE Forest Pathology Specialist Matteo Garbelotto, and learned about forestry issues from forestry specialists Rick Standiford and Bill Stewart. They also learned about funding and administration of research and extension from the Dean of the College of Natural Resources, Keith Gilless. Standiford and Stewart showed the three TFRI scientists about the Center for Forestry’s Blodgett Forest Research Station in Eldorado County, looking at long-term research databases, the philosophy of research forest administration, as well as specific programs on forest health, fuel reduction, and alternative silvicultural regimes.

Field visits had a special emphasis on the altered fire regime in the Sierra Nevada and how the University of California’s research and extension arms are working together to address this pressing issue.

In South Lake Tahoe, CE Forest Advisor Susie Kocher hosted the Taiwanese foresters. They discussed how forest science and forest policy interact with staff at the Tahoe Conservancy, visited the 2007 Angora fire, and visited forest fuels reduction projects. They seemed to particularly enjoy seeing the ample snow in the high country.

Dr. Meng-Ling Wu, Dr. Yue-Hsing "Star" Huang, Dr. Gene-Sheng Tung, Susie Kocher enjoy the snow in South Lake Tahoe.

While in Plumas County the visiting foresters examined community fuel reduction projects conducted by the Plumas County Fire Safe Council that have been monitored by Cooperative Extension Advisor Mike De Lasaux.  They were also given a tour of the Sierra Pacific Industries mill in Quincy.

Dr. Yue-Hsing "Star" Huang, Dr. Meng-Ling Wu, Dr. Gene-Sheng Tung get a hands on lesson while on their Plumas County project tour.

We are hopeful that this visit will enhance the collaboration between California forest research and extension programs and Taiwanese forest scientists.

Posted on Monday, June 20, 2011 at 1:32 PM
  • Posted By: Jaime Adler
  • Written by: Rick Standiford, Susie Kocher, Mike De Lasaux, Jaime Adler
Tags: California (7), forest policy (1), management (2), outreach (1)

New Fire Standards out of Anaheim Conference, Part Two

The ASTM E05.14 Subcommittee on Exterior Fire met today. Task groups that are developing standard test methods to evaluate vents and decking products updated the subcommittee on progress made since the last meeting (these committees meeting every six months, in early December and early June). All of these draft standards are in some stage of balloting at the subcommittee or main committee level.

Professor Joe Urbas, University of North Carolina-Charlotte, gave a presentation to the subcommittee on a research project that he has been working on. Professor Urbas has been evaluating the effectiveness of wetting agents applied to vegetation and building components in resisting radiant heat exposures. The wetting agents he evaluated included water, foam, and a gel product. He tested the vegetation and building components (e.g., siding) with heat from a radiant panel immediately after and one hour after applying the wetting agent.  In conducting this research project, Urbas has developed a performance measure that he calls the critical flux for fire growth (CFFG) – the heat flux that will result in the ignition and growth of fire on the vegetation or building material. The CFFG of a material is determined by exposing different specimens (of the same material) to different heat flux exposures, converging on the CFFG value.  This has direct implications to homes and landscaping vegetation in wildfire prone areas and may provide a way to compare the performance of vegetation. Professor Urbas will be leading a task group to develop a standard test method using what he has learned in this research project.

The radiant panel at UNC-Charlotte used to test materials after the wetting agent was applied.

Posted on Wednesday, June 15, 2011 at 11:34 AM
  • Posted By: Jaime Adler
  • Written by: Steve Quarles, UCCE Forest Specialist
Tags: wetting agents (1), wildfire (32)

New Fire Standards out of Anaheim Conference, Part One

The American Society for Testing and Materials (ASTM) Committee E05 on Fire Standards is meeting this week in Anaheim, California. ASTM is a standards writing organization. Today many task groups met to review and consider changes to standard test methods. For example, the task group that oversees ASTM E-84, Standard Test Method for Surface Burning Characteristics of Building Materials met. This test is used to determine the flame spread rating (Class A, B, or C) for construction materials, and is one of the measures used to describe the performance of deck boards that comply with Chapter 7A of the California Building Code. Chapter 7A is the state code that applies to new construction in California. Today it was announced that a modified version of ASTM E-84, that subjects the test material to the standard flame for 30 minutes instead of 10 minutes, was approved as an ASTM standard. This is the test method used by the Office of the State Fire Marshal to determine if a material can be considered an “ignition resistant material.” This procedure has been used for a number of years, but it just became an official standard.

ASTM members at the Research Review Session in Anaheim, CA.

The ASTM Committee E05 on Fire Standards Research Review Session was held at the end of the day. The title of today’s session was “Quantification of Exterior Fire Exposure Metrics” Task Group Activities and Related Research Programs. The program consisted of four presentations:

-Joe Zicherman (a graduate of UC Berkeley) and President of Fire Cause Analysis, gave a talk titled “The Challenge of Wildfire/Bushfire Events”

-Jon Traw, a building code consultant and Task Group Chair for exterior fire exposures, presented information on a workshop held at the University of California Richmond Field Station in February of this year. This workshop followed the Fire and Materials 2011 conference that was held in San Francisco.

-Dr. Samuel L. Manzello, a researcher at the National Institute for Standards and Technology reported  on recent testing on building vulnerabilities that he has been leading in Japan.

-Steve Quarles, UCCE Forest Specialist reported on recent testing at the Insurance Institute for Business and Home Safety Research Center. Co-authors for this presentation were Anne Cope, the Research Director at the Research Center and Jack Cohen, Researcher at the USDA Forest Service Fire Lab in Missoula Montana.

Tomorrow the subcommittee for exterior fire exposures will meet. Task groups that are developing standards for exterior-use materials are being developed within this subcommittee.

Posted on Tuesday, June 14, 2011 at 11:50 AM
  • Posted By: Jaime Adler
  • Written by: Steve Quarles, UCCE Forest Specialist
Tags: building materials (1), California (7), fire (4)

How many tons of climate benefits are on that log truck?


Making estimates of the life cycle benefits of harvested sawlogs are now required as part of every timber harvest plan in California. While forest managers are intimately familiar with what happens in the forest and at the landing, we are dependent on others to synthesize current and historical data to come up with accurate estimates of the ‘carbon footprint’ of sawlogs after they have left our control. Unfortunately, a number of the common calculators used in California to estimate the life cycle benefits from sawlogs depend on historic and poorly documented estimates that significantly undercount the climate benefits of harvested products. This post highlights some noticeable differences between accounting systems and concludes that data-based estimates will clarify the often underestimated benefits of wood products with respect to global carbon storage impacts.

As anyone who has seen new wood buildings going up, there are many technological innovations, such as the I-Joists (shown below), that suggests that ever more building performance is being squeezed out of logs. A key question for any accounting system that is predicting future trends is how technological innovation is addressed in the estimates.


Source: Wood I-Joist Awareness Guide, AF&PA 2006



Both the Climate Action Reserve (CAR) Forest Protocol 3.2 (http://www.climateactionreserve.org/how/protocols/adopted/forest/current/) and the Calfire GHG Estimator (http://www.fire.ca.gov/resource_mgt/resource_mgt_forestpractice_pubsmemos_memos.php) refer to a USDA Forest Service document, GTR-NE-343 (Smith 2006) or the DOE 1605b publications with the same data tables as the key source for their estimates.  For simplicity, I will compare estimates based on current efficiencies with the California relevant data tables in Smith (2006). The following bar chart compares the estimated climate benefits from an initial delivery of 100 tons of sawlogs to a sawmill in California through all the end uses over a century.



The bioenergy benefits estimates for the 2006 and 2009 USDA Forest Service publications are fairly similar but are ignored by both Climate Action Reserve (CAR) and Calfire. For whatever reason, CAR and Calfire treat bioenergy from wood residues as if they create no useful energy. However, the use of wood residues for energy is considered to be a climate benefit by both the California Energy Commission and in the national accounting that the US EPA provides to the International Program on Climate Change (IPCC) since they replace fossil fuel based sources of energy.

The other differences are how much wood gets wasted in the sawmill (an estimated 15.6% in Smith 2006 versus a measured 1.5% in the 2010 RPA document), the useful life span of the wood products, the efficiency of the collection of wood waste after consumers toss it out, and whether the landfill storage gets counted as carbon storage or not. We do not need to go into great detail here, but more recent data such as Skog (2008), Smith (2009), and US EPA (2011) all provide estimates that wood carbon is stored much longer in both products and landfills than estimated by Smith (2006). The difference between more recent and better documented life cycle analyses and the CAR and Calfire protocols are even greater since CAR and Calfire ignore bioenergy.

After all the numbers are in, it appears that the best practices for utilizing sawlogs in California can retain over 90% of the initial carbon storage benefits. Unfortunately, project level accounting systems that choose to use poorly documented historic estimates and ignore bioenergy (even though bioenergy meets the Renewable Portfolio Standard –RPS - in California) come up with much lower numbers that are out of sync with more recent work in North America and Europe. For example, accounting systems that only include the carbon in wood products assumes a carbon storage efficiency of only 25%. As I mentioned earlier, any consideration of technological innovation will further improve the amount of initial wood carbon that stays in storage or is used as bioenergy.

As California moves towards our stated goals to become more energy-efficient, reduce fossil fuel related emissions, and shift away from energy-intensive building materials, we will need to ‘double check’ our math when it comes to thinking about sawlogs once they leave the landing.



Skog, Kenneth E. 2008 Sequestration of carbon in harvested wood products for the United States. Forest Products Journal 58 (6):56-72.

Smith, James E., Linda S. Heath, Kenneth E. Skog, and Richard A. Birdsey. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States GTR-NE-343. USDA Forest Service, Northeastern Research Station: Newtown Square, PA.

Smith, W. Brad, tech. coord; Miles, Patrick D., data coord.; Perry Charles H., map coord,; Pugh, Scott A. Data CD coord. GTR-WO-78. 2009. Forest Resources of the United States, 2007. Washington, DC:  USDA Forest Service, Washington Office.

U.S. Environmental Protection Agency. 2011. Inventory of U. S. Greenhouse Gas Emissions and Sinks: 1990 – 2008.  http://epa.gov/climatechange/emissions/usinventoryreport.html

Posted on Thursday, June 2, 2011 at 3:47 PM
  • Posted By: Jaime Adler
  • Written by: Bill Stewart, UCCE Forest Specialist
Tags: bioenergy (1), California (7), carbon (2), climate benefits (1), emissions (1), energy-efficient (1), sawlog (1), timber (1)

Opportunities for Log Exports for California Landowners

Although the weak housing markets have continued to suppress prices for logs and stumpage for California forest landowners, there has been tremendous growth in opportunities from the export market. This has largely been driven by surges in the demand for west coast logs in China. According to the International Wood Markets Group, Inc. (http://www.woodmarkets.com), the final statistics for 2010 showed that log imports by China increased 22% by in total volume and 49% by value from 2009. This increased demand, coupled with log tarrifs in Russia, have had the effect of increasing the demand for logs from the US, Canada, New Zealand, and Australia. This trend appears to be continuing and both the Ports of Oakland and Humboldt Bay are active in log exports to China.

Total timber harvest California increased by 44 percent in 2010 compared to 2009 (http://www.boe.ca.gov/proptaxes/timbertax.htm), but was still the second lowest harvest level since the Board of Equilization kept records (see Figure 1). There are encouraging signs for upturns in Douglas-fir, pine and hem/fir prices driven by the export market. Figure 2 shows the harvest value schedules for these three species for the Northern Sierra Nevada as an example, for the past 5 years. Stumpage prices in the Northern Sierra Nevada, chosen for an illustrative example, have doubled in the past year.

Landowners are encouraged to look closely at export markets as they develop plans to sell products from their timberlands, as it may be a way to develop cash flow for products which have had suppressed prices for several years.

Figure 1. Statewide trends in public and private timber harvest in California – 1978 – 2010.

Figure 2. 5-year trends in stumpage price for the Northern Sierra Nevada.

Posted on Monday, May 23, 2011 at 2:31 PM

First storyPrevious 5 stories  |  Next 5 stories | Last story

Webmaster Email: cecentralsierra@ucdavis.edu