Central Sierra
University of California
Central Sierra

Forest Research and Outreach Blog

Berkeley Forests: New Future for UC Center for Forestry & Center for Fire Research & Outreach

The Center for Forestry and Center for Fire Research and Outreach are merging to become Berkeley Forests!

As we all know, forests and fire are inextricably linked in California. Historically, both Centers have carried out research, outreach, and education on human interactions with California ecosystems. Combining the Centers under one roof will facilitate the work of our co-directors, Dr. Scott Stephens and Dr. William Stewart, our Berkeley Forests staff, and management of our new research forest, Grouse Ridge.

To this end, we are proud to release our new website at https://forests.berkeley.edu/ The new website features easy to access information about our forests, fire resources, information on current research, our long-term datasets for our forests, and more.

With these changes, we will also be hiring a new Policy Analyst (located at the Berkeley campus). We seek someone with experience in and knowledge of forests, fire, grant writing, social media, website work, and GIS/data analysis. An official position will be released shortly on the Berkeley jobs website, but please make sure to follow us on social media or email one of or co-directors so you don't miss it!

We're also merging all our social media pages! The Center for Forestry and Center for Fire facebook pages will be closed and transition to the Blodgett Forest Research Station page to become Blodgett Research Station at Berkeley Forests. Please like us at our new home if you have not done so already! 

On twitter, the @ucforestcenter page will be closed, and the @ucfirecenter page will become @berkeleyforests. If you are only on the @ucforestcenter, please make sure to change your follow to @berkeleyforests!

If you have questions or concerns, please contact Berkeley Forests' co-directors at billstewart@berkeley.edu or sstephens@berkeley.edu

Posted on Wednesday, June 13, 2018 at 10:39 AM
  • Author: Carlin Starrs

Trauma and resilience in California disaster response and readiness

Reposted from the Confluence, blog of the California Water Resources Institute

California National Guard members wade through mud to people trapped inside a Montecito home. Air National Guard photo by Senior Airman C. Housman.

 Maryam Kia-Keating, Ph.D. is an Associate Professor of Clinical Psychology at UC Santa Barbara and a Licensed Clinical Psychologist. Her work focuses on coping and resilience in the context of adverse childhood experiences, trauma, and stress, particularly for vulnerable and understudied populations. She is on Twitter @drkiakeating.

You have done research related to resilience and trauma in the wake of disasters in California. What have you learned?

It's important to pay attention to the psychological impact of disasters. Oftentimes, there is an initial, understandable focus on basic needs and stabilization in the aftermath of disasters. But neglecting psychosocial well-being is short-sighted. There is a lot of empirical evidence demonstrating its impact on other elements of individual and community health and resilience, both initially and over the long-term.

What I have learned in my own research, as well as from work by many others in disaster mental health, is that recovery takes time and has many phases. It can be different for different people who experienced the same disaster, and it is important not to judge one person's experiences and reactions by another's.

For example, after a wildfire, one family described enjoying a newfound sense of cohesion and camaraderie with their neighbors. At the same time, they experienced conflicts and tensions because of the differences in what people needed, and the fact that their reactions that were sometimes poles apart. Part of the issue was that the impact the fires had on homes was sometimes vastly different; some were still standing and others right next door were burnt to the ground.

It's also clear from empirical data that secondary stressors play a major role. The trauma experienced during the disaster is important, but what you face as a result -- financial stress, displacement, and other burdens -- adds another component that predicts overall well-being in the long-term.

A California Air National Guard rescue helicopter with air crews provides search and rescue operations during mudslides in southern California, January 2018. Photo by Staff Sgt. Cristian Meyers.

Can you describe the kinds of issues that face people after they deal with disasters? You've written about both trauma and more positive outcomes, like prosocial behaviors, that emerge.

A traumatic event shakes your core assumptions about the world as a safe place. That feeling of deep uncertainty and disruption to your own safety and the safety of those you love can be terrifying. The added intensity of personal and material losses can lead to complete and utter disorientation. Some people I worked with described a period of time when they just couldn't focus on anything, walking around with glazed expressions, not recognizing familiar people and places. At the same time, well-meaning people and organizations tried to provide them with assistance, but they were challenged to receive the benefits.

Following that initial period, they described disrupted relationships. This led to a sense of isolation and disconnection because they were still struggling even though the disaster itself was long past, and they felt ashamed or that others couldn't understand. Several families I spoke with after losing their homes to a wildfire just fell apart over time. They stopped speaking and went their separate ways. They didn't have any resources left within themselves to deal with the losses they had experienced. In the case of a husband and wife, they coped with the disaster very differently and found they didn't know where their common ground had gone or how to find it again.

It is also important to recognize that, yes, there are positive outcomes that people and communities can experience, including finding new meaning and increasing their altruistic and prosocial behaviors towards others. This kind of resilience, or even what's called post-traumatic growth, can happen for anyone. But, no one should feel flawed in how they respond. It takes time to build the capacity for resilience, and it's especially helpful to take a trauma-informed lens to help support people and communities in developing it, rather than judging those who don't show it right away. We do a lot to encourage people and communities to have their emergency preparedness plans and kits ready, but not enough to equip themselves with psychosocial “resilience readiness” in the face of disasters.

How might people working from more of a natural science background become more trauma informed as they work with individuals and communities affected by disaster?

In Santa Barbara, after experiencing the massive Thomas Fire in December 2017 and hazardous air quality for weeks, we were then pummeled by the horrible tragedy of the Montecito debris flow that took the lives of many beloved members of the community. In the aftermath, there has been a surge of connection between scientists, particularly geologists, and the community. People are extremely anxious to understand the science and engage with researchers to comprehend not only what happened, but the potential dangers ahead.

A Santa Barbara County firefighter searches through a home destroyed by a deadly mudflow. Photo courtesy of Mike Eliason/Santa Barbara County Fire.

The kind of scientific information that tends to be helpful, productive, and protective for communities in the immediate aftermath of disasters typically focuses on what's most important for immediate safety and stabilization. These are primary goals that approaches like Psychological First Aid articulate in order to reestablish calm and order and reduce distress. In the longer term, of course scientific information can and should be shared, but it's good to continue to be thoughtful and intentional about how and when to disseminate that knowledge to support community change and resilience. Another great resource comes from journalists who report on disasters and other tragedies, and have thought carefully about how to approach these issues.

I've been fortunate enough to spend time with interdisciplinary groups at conferences focused on climate change and disasters. These conferences have also opened my eyes to the personal distress that natural science researchers and professionals have been experiencing, in part because they are so attuned to the potential risks in our natural environment. This knowledge can heighten their fear and sense of urgency. Those who help communities respond to disaster can experience secondary trauma, or what's called vicarious trauma, which is where people who are responding to disasters or are otherwise exposed to traumatic material can experience the same kinds of post-traumatic stress symptoms.

Oftentimes, people are told to monitor and reduce their exposure to traumatic material, but professionals like first responders and natural scientists who continue to study these issues, don't have that luxury. They can't just turn it off because it comes with the territory. But they would be wise to attend to the role of trauma in their work, to minimize its potential negative consequences. One repository of evidence-informed tools is the Vicarious Trauma Toolkit, which is free and easy to access. I'm hopeful that as we raise awareness about these issues across disciplines that we'll see more energy and commitment towards trauma-informed practices and preparations.

Posted on Tuesday, April 24, 2018 at 5:35 PM
  • Author: Faith Kearns

UC study seeks street trees that can cope with climate change

Reposted from UCANR News

The changing climate predicted for California – including less rain and higher day and nighttime temperatures – is expected to cause chronic stress on many street tree species that have shaded and beautified urban areas for decades.

Realizing that popular trees may not thrive under the changing conditions, UC Cooperative Extension scientists are partnering with the U.S. Forest Service in an unprecedented 20-year research study to expand the palette of drought-adapted, climate-ready trees for several of the state's climate zones.

“The idea is to look at available but under-planted, drought-tolerant, structurally sound, pest resistant trees for Southern California that do well in even warmer climates,” said Janet Hartin, UCCE horticulture advisor in San Bernardino County.

Hartin, a 34-year veteran advisor, said the project is her first to stretch to 20 years; it will likely extend past her tenure with UCCE.

“I'd like to retire in five or six years,” she said. “But I'm very excited about being a pioneer in a study that will continue with my successors. I think it's important for our children and our children's children, as well as for the environment.”

At the end of 2019, with three years of data on tree health and growth rates, the scientists expect to be able to publish the first results and make them available to arborists, urban foresters and residents throughout the regions of the study.

Twelve tree species were selected for each climate zone in the comparative study, with several area parks used as control sites. Hartin and her Southern California research collaborators – UCCE advisors  Darren Haver of Orange County and Jim Downer of Ventura County – worked closely with UC Davis plant biologist Alison Berry, UC Davis research associate Greg McPherson and USFS research urban ecologist Natalie van Doorn to select promising species.

They looked for trees that are already available at local nurseries, but are underutilized. The trees in the project exhibit drought tolerance and disease resistance, plus produce minimal litter. The researchers also sought trees that would provide ample cooling shade for a long time – ideally 50 years or longer.

The varieties come from areas around the world with climates similar to California. Two trees planted in replicated plots at the UC Riverside Citrus Field Station are native to Australia, two are native to Oklahoma and Texas, one is native to Asia and two are non-native crosses of other trees. Three of the trees are native to California: the netleaf hackberry, Catalina cherry and island oak.

“Trees are a long-term investment,” Hartin said. “A tree will live 50, 70, 90 years. The proper selection is very important to help ensure longevity.”

Making the long-term investment with the proper selection yields considerable returns. In a warming world, trees are natural air conditioners.

“Urban areas create heat islands, with dark asphalt surfaces reradiating heat. Cities can be 10 to 20 degrees warmer than the surrounding environment,” Hartin said.

Other tree benefits include soil health and stability, wildlife habitat and aesthetic beauty.

Following are a sampling of trees that are part of the comparative study:

Acacia – A 20-foot-tall, 20-foot wide evergreen that is drought resistant, and withstands moderate irrigation.  Native of Australia.

Palo verde is a drought-resistant tree. (Photo: Bri Weldon, flickr, CC BY-SA 2.0)
 

Blue palo verde – A tree that reaches about 25 feet in height, the Blue palo verde is drought resistance and lives 50 to 150 years. Its trunk, branches and leaves have a blue-green hue. Native to the southwestern U.S. and Mexico.

Brazilian cedarwood – A native of Brazil and Paraguay, the deciduous tree grows to 50 to 65 feet. The tree produces pale yellow tubular flowers in the spring.

Catalina cherry – Native to the chaparral areas of coastal California, the Catalina cherry grows to 30 feet high. The evergreen tree tolerates drought when mature. It produces sweet purple-to-black edible fruit.

Chinese pistache – A deciduous tree with beautiful fall color. Grows to 35 feet tall, 30 feet wide. Drought resistant, but tolerates moist soil. Native to central and western China.

Desert willow – Growing to 30 feet tall and living 40 to 150 years, the desert willow tolerates highly alkaline soil and some salinity. A deciduous tree, it boasts large pink flowers all summer that attract hummingbirds and other wildlife. Native to the southwestern U.S. and northern Mexico.

Escarpment live oak – Native to west Texas, this tree is cold hardy and drought tolerant. Typically evergreen, it can be deciduous in colder climates.

Ghost gum – Very tall at maturity and drought tolerant. An Australia native.

Indian laurel – Commonly called a ficus, this is a 35-foot-tall, 35-foot-wide tree at maturity that is drought resistant and tolerates highly alkaline and saline soils. Shade potential is high. Native of Asia and Hawaii.

Ironwood – A southwestern and northern Mexico native, Ironwood is semi-drought resistant once mature and tolerates alkaline soil. Ironwood, which grows to about 33 feet tall, can live 50 to 150 years.

Island oak – This tree is native to five of six California off-shore islands. Drought tolerant, it grows to nearly 70 feet tall when mature.

Maverick mesquite – Native to the southwestern U.S. and northern Mexico, this tree does well in full sun and is drought resistant once established. The tree grows to 35 feet tall. The Maverick mesquite is a thornless variety.

Mulga – A versatile and hardy tree that grows 15 to 20 feet in height, the mulga – a Western Australia native – tolerates hot and dry conditions. The leaves are evergreen and the tree has yellow elongated fluffy flowers in spring.

Netleaf hackberry – A California native, the netleaf hackberry grows to 30 feet. Its deep root systems and heat resistance makes the tree idea for urban conditions.

Climate-ready trees planted in 2016 at the UC South Coast Research and Extension Center.
 

Rosewood – Native to southern Iran, Indian rosewood grows to 65 feet tall, and 40 feet wide. Evergreen. Semi drought resistant and intolerant of alkaline soil.

Shoestring Acacia – Evergreen and 30 feet tall when mature, shoestring acacia is drought resistant and thrives in slightly acidic to highly alkaline soils. Native to Australia.

Tecate cypress – A native of Southern California and Mexico, the Tecate cypress is very drought tolerant. Its foliage is bright green. Young trees are pyramidal in shape, becoming more rounded or contorted with age.

Partners in the tree study are Los Angeles Beautification Team volunteers, LA Parks and Recreation team, Chino Basin Water Conservation District, and Mountain States Wholesale Nursery.

Funding and other support is provided by LA Center for Urban Natural Resources Sustainability, ISA Western Chapter, Britton Fund, USFS Pacific Southwest Research Station, and the UC system.

Posted on Wednesday, April 18, 2018 at 3:45 PM
  • Author: Jeannette Warnert

In memoriam: Doug McCreary

 
Doug McCreary speaking at an oak regeneration field day. Photo by Rick Standiford.
 

Douglas DeWitt McCreary, UC Cooperative Extension natural resources specialist, died on Feb. 15 in Grass Valley. He was 72.

“Doug was the epitome of what a CE specialist should be - a world-renowned researcher, a first-rate teacher, and an attitude that could bring people from diverse backgrounds and philosophies together,” said Richard B. Standiford, UC Cooperative Extension forest management specialist emeritus and long-time colleague of McCreary.

Born in San Mateo and raised in Berkeley, McCreary earned a bachelor's degree in economics at UC Riverside. After graduating from UCR, he studied at the London School of Economics for one year, then traveled throughout Europe. He earned his master's degree and Ph.D. in forestry at Oregon State University.

In 1986, McCreary joined UC ANR as part of its statewide Integrated Hardwood Range Management Program, newly created in response to public concern that oaks, the most common tree species in California hardwood rangelands, and their habitats were declining through neglect.

 

McCreary and daughter Megan walk among the oaks in a photo published in California Agriculture journal article “Urbanization crowds out oaks” in September 1995.
McCreary's research and extension work revolutionized oak regeneration in the state.

“Prior to Doug's work, oak planting on rangelands was a costly and low-success enterprise,” Standiford said. “Natural oak regeneration of white oaks was lacking in many areas, raising concerns about the long-term sustainability of oak woodlands. Doug developed low-cost, practical techniques for planting oaks, predominantly blue and valley oaks, on rangeland sites. This work was widely adopted throughout the state.”

McCreary introduced the use of tree shelters from Europe, and found that they increased survival of oak seedlings in California's Mediterranean climate. He also developed the timing for successfully gathering acorns for regeneration. After the 49er Fire, which started near Highway 49 in Nevada County in 1988, he organized Project Acorn, a county-wide effort with dozens of volunteers who collected and planted acorns in areas devastated by the fire. In 1990, McCreary was honored for Project Acorn with the Take Pride in America Award from the U.S. Department of the Interior in Washington, D.C.

McCreary, who was based at the Sierra Foothill Research and Extension Center, worked with state, federal and private nurseries to produce high-vigor bare root and containerized seedlings. He also developed silvicultural techniques to encourage natural seedlings to recruit into larger size trees.

“Doug was not content to just produce voluminous scientific journal articles on oak regeneration, but organized countless oak regeneration field days, workshops and symposia throughout the entire state,” Standiford said. “His biannual oak regeneration field days at the Sierra Foothill Research and Extension Center were must-attend events for the restoration and conservation community.”

The ANR publication, “Regenerating Rangeland Oaks” written and updated by McCreary in 2009, Standiford said, “is the bible for oak restoration, and provides a practical guide for all parts of the regeneration cycle for landowners and professionals.”

McCreary retired in 2011.

From left, Joni Rippee, McCreary, Bill Tietje, Greg Giusti, Sherry Cooper, James Bartolome and Rick Standiford at Sierra Foothill Research and Extension Center in May 2017. Photo courtesy of Rick Standiford.
 

“We will all miss Doug very much. He was a wonderful colleague and friend,” Standiford said.

“I concur with Rick,” said Mel George, UC Cooperative Extension rangeland management specialist emeritus.

McCreary is survived by his partner, Therese Hukill-DeRock, his children Tyson McCreary and Megan Cielatka, and his grandchildren Hazel, Sybil, Ian and Isaac.

A celebration of McCreary's life is planned for June 10 in Grass Valley.

Read more about McCreary at https://www.theunion.com/news/obituaries/obituary-of-douglas-dewitt-mccreary.

 

Posted on Thursday, April 5, 2018 at 9:19 AM
  • Author: Pam Kan-Rice

Walleye fish populations are in decline

Reposted from UC Davis Climate Change News

Quick Summary

  • It now takes 1.5 times longer to produce the same amount of walleye as it did in 1990
  • Walleye decline accompanied rise in lake temperatures
  • Anglers, agencies and tribes need to work collaboratively on strategies to move forward

Walleye, an iconic native fish species in Wisconsin, the upper Midwest and Canada, are in decline in northern Wisconsin lakes, according to a study published this week in the Canadian Journal of Fisheries and Aquatic Species.

The study does not pinpoint the exact causes for the decline, though it suggests it is likely a combination of factors, including climate change, habitat degradation and harvest rates that might at times outpace production levels if not monitored closely. Additional research is ongoing regarding what declining production means for future walleye harvests in this region.

Walleye, like this one, is a popular game fish prized for its flaky meat and mild, sweet flavor. (Courtesy Andrew Rypel)

‘Something is not right'

For the study, researchers analyzed production statistics collected between 1990 and 2012 for adult walleye populations in Wisconsin lakes. They found that annual walleye production across all lakes decreased by 27 percent during that time. It takes 1.5 times longer to produce the same amount of walleye biomass, or fish weight, now as it did in 1990.

Lakes experiencing declines are often stocked with walleye to make up for a loss in natural production. However, the data show that stocked lakes have seen larger declines in walleye production. Lakes with a mixture of both stocked and naturally reproducing walleye experienced declines of 47 percent, while lakes with only stocking and no natural reproduction declined by 63 percent.  

“This is a clear warning sign that something is not right,” said lead author Andrew Rypel, an ecologist at University of Wisconsin-Madison and the Wisconsin Department of Natural Resources during the time of the study. He is currently an associate professor and the Peter B. Moyle and California Trout Chair in Coldwater Fish Ecology at the University of California, Davis. “The results suggest that anglers, tribes and resource management agencies will all need to work together to craft new science-based management policies for moving forward.”

About walleye

 

Rypel, who grew up in Wisconsin fishing walleye, notes that walleye are “kind of a big deal” in the area. As salmon are to the West, walleye are to this region. People travel to the state's Northwoods just to fish for walleye; a large Catholic population enjoys them for Friday fish fries; and Native American tribes spear walleye in the early spring in accordance with their cultural and religious traditions. The meat is prized for its flaky, mild and sweet flavor.

“People catch and release bass,” Rypel said. “That's not the case with walleye. People love to eat walleye.”

Lead author Andrew Rypel, currently an associate professor at UC Davis, holds a walleye in Wisconsin. (Courtesy Andrew Rypel)

Threats to walleye

Bass like warmer waters, and unlike walleye, their populations have increased over the study period. Walleye require cooler waters, and their decline has accompanied a rise in lake temperatures. This points to climate change as one factor in the loss of walleye that the authors say should continue to be examined.

Habitat alteration, residential development around walleye-bearing lakes and indirect food web interactions are likely additional factors.

Another complication is that while most Wisconsin lakes are dominated by low-producing walleye populations, some of the highest-producing walleye lakes are used to estimate sustainable harvest for the region. Consequently, studies on those healthier walleye lakes may not adequately represent the overall walleye population.

Action is underway

State, tribal and community leaders have already taken several actions to help the struggling walleye. These include major stocking initiatives, new fishing regulations, programs to enhance habitat, bass removals and even moratoriums on walleye harvests.

“Most people interested in the outdoors, fishing and hunting are interested in leaving something for future generations, hopefully something better,” Rypel said. “It's essential that we work collaboratively when we see trends that fisheries like these are in decline.”

Co-authors on the study included Greg Sass from the Wisconsin Department of Natural Resources, and Daisuke Goto and M. Jake Vander Zanden from the University of Wisconsin-Madison.

The study was funded by the Wisconsin Department of Natural Resources, the United States Geological Survey and the National Science Foundation's Long Term Ecological Research Program in North Temperate Lakes.

Posted on Thursday, March 29, 2018 at 2:09 PM
  • Author: Kat Kerlin
Tags: Andrew Rypel (1), climate change (13), fishery (1), walleye (1)

First story  |  Next 5 stories | Last story

 
E-mail
 
Webmaster Email: cecentralsierra@ucdavis.edu