Central Sierra
University of California
Central Sierra

Posts Tagged: wildfire

Trauma and resilience in California disaster response and readiness

Reposted from the Confluence, blog of the California Water Resources Institute

California National Guard members wade through mud to people trapped inside a Montecito home. Air National Guard photo by Senior Airman C. Housman.

 Maryam Kia-Keating, Ph.D. is an Associate Professor of Clinical Psychology at UC Santa Barbara and a Licensed Clinical Psychologist. Her work focuses on coping and resilience in the context of adverse childhood experiences, trauma, and stress, particularly for vulnerable and understudied populations. She is on Twitter @drkiakeating.

You have done research related to resilience and trauma in the wake of disasters in California. What have you learned?

It's important to pay attention to the psychological impact of disasters. Oftentimes, there is an initial, understandable focus on basic needs and stabilization in the aftermath of disasters. But neglecting psychosocial well-being is short-sighted. There is a lot of empirical evidence demonstrating its impact on other elements of individual and community health and resilience, both initially and over the long-term.

What I have learned in my own research, as well as from work by many others in disaster mental health, is that recovery takes time and has many phases. It can be different for different people who experienced the same disaster, and it is important not to judge one person's experiences and reactions by another's.

For example, after a wildfire, one family described enjoying a newfound sense of cohesion and camaraderie with their neighbors. At the same time, they experienced conflicts and tensions because of the differences in what people needed, and the fact that their reactions that were sometimes poles apart. Part of the issue was that the impact the fires had on homes was sometimes vastly different; some were still standing and others right next door were burnt to the ground.

It's also clear from empirical data that secondary stressors play a major role. The trauma experienced during the disaster is important, but what you face as a result -- financial stress, displacement, and other burdens -- adds another component that predicts overall well-being in the long-term.

A California Air National Guard rescue helicopter with air crews provides search and rescue operations during mudslides in southern California, January 2018. Photo by Staff Sgt. Cristian Meyers.

Can you describe the kinds of issues that face people after they deal with disasters? You've written about both trauma and more positive outcomes, like prosocial behaviors, that emerge.

A traumatic event shakes your core assumptions about the world as a safe place. That feeling of deep uncertainty and disruption to your own safety and the safety of those you love can be terrifying. The added intensity of personal and material losses can lead to complete and utter disorientation. Some people I worked with described a period of time when they just couldn't focus on anything, walking around with glazed expressions, not recognizing familiar people and places. At the same time, well-meaning people and organizations tried to provide them with assistance, but they were challenged to receive the benefits.

Following that initial period, they described disrupted relationships. This led to a sense of isolation and disconnection because they were still struggling even though the disaster itself was long past, and they felt ashamed or that others couldn't understand. Several families I spoke with after losing their homes to a wildfire just fell apart over time. They stopped speaking and went their separate ways. They didn't have any resources left within themselves to deal with the losses they had experienced. In the case of a husband and wife, they coped with the disaster very differently and found they didn't know where their common ground had gone or how to find it again.

It is also important to recognize that, yes, there are positive outcomes that people and communities can experience, including finding new meaning and increasing their altruistic and prosocial behaviors towards others. This kind of resilience, or even what's called post-traumatic growth, can happen for anyone. But, no one should feel flawed in how they respond. It takes time to build the capacity for resilience, and it's especially helpful to take a trauma-informed lens to help support people and communities in developing it, rather than judging those who don't show it right away. We do a lot to encourage people and communities to have their emergency preparedness plans and kits ready, but not enough to equip themselves with psychosocial “resilience readiness” in the face of disasters.

How might people working from more of a natural science background become more trauma informed as they work with individuals and communities affected by disaster?

In Santa Barbara, after experiencing the massive Thomas Fire in December 2017 and hazardous air quality for weeks, we were then pummeled by the horrible tragedy of the Montecito debris flow that took the lives of many beloved members of the community. In the aftermath, there has been a surge of connection between scientists, particularly geologists, and the community. People are extremely anxious to understand the science and engage with researchers to comprehend not only what happened, but the potential dangers ahead.

A Santa Barbara County firefighter searches through a home destroyed by a deadly mudflow. Photo courtesy of Mike Eliason/Santa Barbara County Fire.

The kind of scientific information that tends to be helpful, productive, and protective for communities in the immediate aftermath of disasters typically focuses on what's most important for immediate safety and stabilization. These are primary goals that approaches like Psychological First Aid articulate in order to reestablish calm and order and reduce distress. In the longer term, of course scientific information can and should be shared, but it's good to continue to be thoughtful and intentional about how and when to disseminate that knowledge to support community change and resilience. Another great resource comes from journalists who report on disasters and other tragedies, and have thought carefully about how to approach these issues.

I've been fortunate enough to spend time with interdisciplinary groups at conferences focused on climate change and disasters. These conferences have also opened my eyes to the personal distress that natural science researchers and professionals have been experiencing, in part because they are so attuned to the potential risks in our natural environment. This knowledge can heighten their fear and sense of urgency. Those who help communities respond to disaster can experience secondary trauma, or what's called vicarious trauma, which is where people who are responding to disasters or are otherwise exposed to traumatic material can experience the same kinds of post-traumatic stress symptoms.

Oftentimes, people are told to monitor and reduce their exposure to traumatic material, but professionals like first responders and natural scientists who continue to study these issues, don't have that luxury. They can't just turn it off because it comes with the territory. But they would be wise to attend to the role of trauma in their work, to minimize its potential negative consequences. One repository of evidence-informed tools is the Vicarious Trauma Toolkit, which is free and easy to access. I'm hopeful that as we raise awareness about these issues across disciplines that we'll see more energy and commitment towards trauma-informed practices and preparations.

Posted on Tuesday, April 24, 2018 at 5:35 PM
  • Author: Faith Kearns

Utility to turn off power when fire risk is high

During periods of "extreme fire conditions," PG&E will shut off electric power lines to prevent wildfires, reported Dale Kasler in the Sacramento Bee.

The reporter spoke to Lenya Quinn-Davidson, UC Cooperative Extension area fire advisor in Northern California, about the utility's proposed actions. She said PG&E will have to give communities plenty of advance warning before turning off power so residents aren't left without a means of receiving emergency information.

"They're going to have to do a lot of good community outreach so people will be prepared," she said. Still, she called it "a reasonable short-term solution while they're figuring out other things" to reduce fire risks.

Lenya Quinn-Davidson, the UC Cooperative Extension area farm advisor who serves Humboldt, Siskiyou, Trinity and Mendocino counties. (Photo: Larry Luckham)
Posted on Wednesday, March 28, 2018 at 2:31 PM
  • Author: Jeannette Warnert

Mysterious mistletoe

To see dwarf mistletoe seeds is to experience them. These are not typical seeds that gently drop from a mature plant. Rather, they are explosive — forcibly ejected from their fruits at high rates of speed. I remember learning about this in college: that dwarf mistletoe seeds can travel up to 60 mph and fly more than 60 feet from their hosts (Hinds et al., 1963). This process is triggered by internal heat production (called thermogenesis) within the mistletoe fruit — something that's never been observed in another plant (Rolena et al., 2015). It wasn't until many years after college that I actually experienced the phenomenon for myself. I remember driving along the Trinity River here in northern California and seeing a sudden splattering of little gelatinous green balls all over my windshield. I still remember how excited I was when I realized what they were: seeds that had flown as fast as I was driving. 

Dwarf mistletoe fruits. Credit: Thompson Rivers University shared via Flickr Creative Commons.

It turns out that the seeds are only one of many intriguing things about mistletoe. There are more than 1,300 species of mistletoe; they grow all over the world (on all continents except Antarctica!); they support and interact with wildlife in all kinds of neat ways (Watson, 2001); and they are part of human culture and tradition (even evoking a kissing response in some!). And yet they're parasitic — not usually our favorite type of organism. More specifically, they're hemi-parasitic, meaning that they obtain all of their water and minerals from their host plant, but have some ability to provide for themselves. For example, leafy mistletoe, which is common in oaks where I live, is fully photosynthetic and therefore has a limited impact on its host trees. Dwarf mistletoe is a more demanding guest, requiring water, minerals and other nutrients, and taking a much greater toll on the many species of plants that it inhabits.

Leafy mistletoe is fully photosynthetic and therefore has a limited impact on its host trees. Credit: Dan Kidwell shared via Flickr Creative Commons.

As a major forest pathogen, dwarf mistletoe has a strong and well-studied connection to fire. Studies conducted in the 1970s clearly noted the relationship, pointing to fire suppression as the primary driver of increasing dwarf mistletoe abundance in many North American forests (Alexander and Hawksworth, 1975). At that time, dwarf mistletoe was recognized as one of the most damaging pathogens in many important forest types, and its impacts on the timber industry — with estimated losses of 3.2 billion board feet annually (Shea and Howard, 1969) — spurred quite a bit of research into its ecology and potential control tactics. Wildfire and prescribed fire naturally emerged as focal points for research, and those topics have continued to lure researchers, just as dwarf mistletoe has continued to wreak havoc. In a 2008 paper, Paul Hessburg and others argued that due to its wide distribution and habitat versatility, “dwarf mistletoes are probably responsible for more tree growth and mortality losses each year than all other forest pathogens combined.”

Like most forest pests and diseases, the relationship between fire and dwarf mistletoe is a two-way street: mistletoe affects fire, and fire affects mistletoe. For example, research has shown that mistletoe-infested stands of ponderosa pine have higher snag densities and higher fuel loads than uninfested stands, and that infested stands have higher crown fire potential (Hoffman et al., 2007). Mistletoe also has a number of tree-level effects that increase flammability and fire behavior potential, including the establishment of witches' brooms (dense, twiggy growth around areas of infection) and resinous stem cankers (Alexander and Hawksworth, 1975). Other research has documented reduced self-pruning and stunted growth in infected trees, both of which effectively lower the height of the live crown and thereby increase the potential for torching and canopy fire (Conklin and Geils, 2008).

The effects of mistletoe on fire behavior are fairly intuitive, but I find the effects of fire on mistletoe to be a little more intriguing. For instance, a study by Zimmerman and Laven tested the effect of smoke on the seed germination of three species of dwarf mistletoe, and they found that smoke exposure can reduce germination or prevent it altogether (when exposure exceeds 60 minutes) (1987). Earlier work by Koonce and Roth had also indicated that heat and smoke might have a disproportionate effect on dwarf mistletoe compared with their effects on the host plant (1980). Other studies have looked at the sanitizing effect that fire can have on mistletoe-infected trees. Conklin and Geils studied ponderosa pine stands in New Mexico, and they observed reductions in the dwarf mistletoe rating (DMR) — a categorical system for assessing infection (Hawksworth, 1977) — in 12 of 14 frequently burned plots (2008). This sanitizing effect was associated with average tree scorch above 25 percent, and it points to the potential utility of prescribed fire for dwarf mistletoe management, assuming that fire intensity is able to meet these minimum “scorch pruning” thresholds. Hessburg et al. also found that thinning and burning could be effective treatments for dwarf mistletoe in ponderosa and Douglas-fir forests, but that treatments would have to be implemented on regular intervals, as effects diminished after 20 years (2008).

Foresters using prescribed fire to treat mistletoe infestations in the 1970s. Credit: U.S. Department of Agriculture shared via Flickr Creative Commons.

Of course, the relationship between fire and mistletoe — and the approach to fire-based treatments — is highly dependent on the fire regime of the specific forest type in question. Much of the literature on dwarf mistletoe and fire comes out of frequent-fire forests like ponderosa pine and western mixed conifer, but lodgepole pine and black spruce are also common hosts, and their fire regimes are much different. In those types of forests, which are adapted to less frequent, more severe fire regimes, stand-replacing fire may be important for protecting future cohorts of trees from infection. Research in Rocky Mountain lodgepole pine forests showed that the time elapsed since the last stand-replacing fire was a good predictor of mistletoe infestation, and that the presence of remnant infected trees increased rates of infestation in younger, post-fire stands (Kipfmueller and Baker, 1998). In these forest types, the authors suggest that effective prescribed fire treatments would need to be intense and stand replacing.

I've always thought that mistletoe was interesting, but working on this blog opened a whole can of unexpected worms. Who knew that it was mistletoe, with its many interesting wildlife synergies, that inspired Charles Darwin to study evolution (Watson 2001)? Or that the term “mistletoe” is an ancient reference to some mistletoe species' reliance on seed dispersal by birds, who eat the seeds then deposit them on tree branches — the name comes from “misteltan,” an Anglo-Saxon word meaning “dung twig” (!!). Mistletoe has also been used by humans to bait deer for hunting (the foliage is quite tasty!); to treat infertility, syphilis, bubonic plague, epilepsy and other ailments; and to celebrate the return of summer, which mistletoe hints at with its evergreen foliage (Paine and Harrison, 1992). So with this blog, I celebrate mistletoe — i.e., dung twig, kissing plant, ballistic seeder, fire friend and foe — as quite possibly the coolest plant ever!

The Fire Adapted Communities Learning Network publishes blogs on a weekly basis. Subscribe to have more stories like this delivered to your inbox.


References cited:

Alexander, M. E., & Hawksworth, F. G. (1975). Wildland fires and dwarf mistletoes: a literature review of ecology and prescribed burning (Vol. 14). Rocky Mountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture.

Hawksworth, F. G. (1977). The 6-class dwarf mistletoe rating system. The 6-class dwarf mistletoe rating system., (RM-48).

Hinds, T., Hawksworth, F. & McGinnies, W. Seed discharge in Arceuthobium: a photographic study. Science 140, 1236–1238 (1963).

Hoffman, C., Mathiasen, R., & Sieg, C. H. Dwarf mistletoe effects on fuel loadings in ponderosa pine forests in northern Arizona. Canadian Journal of Forest Research, 37, 662-670.

Kipfmueller, K. F., & Baker, W. L. (1998). Fires and dwarf mistletoe in a Rocky Mountain lodgepole pine ecosystem. Forest ecology and management108(1-2), 77-84.

Koonce, A. L., & Roth, L. F. (1980, April). The effects of prescribed burning on dwarf mistletoe in ponderosa pine. In Proceedings of the Sixth Conference on Fire and Forest Meteorology, Seattle, Wash (pp. 22-24).

Paine, L. K., & Harrison, H. C. (1992). Mistletoe: its role in horticulture and human life. HortTechnology2(3), 324-330.

Rolena, A. J., Paetkau, M., Ross, K. A., Godfrey, D. V., & Friedman, C. R. (2015). Thermogenesis-triggered seed dispersal in dwarf mistletoe. Nature communications6, 6262.

Shea, K. R., & Howard, B. (1969). Dwarf mistletoe control; a program for research and development in the West. West Forest Conserv Assoc West Reforest Coord Comm Proc.

Watson, D. M. (2001). Mistletoe—a keystone resource in forests and woodlands worldwide. Annual Review of Ecology and Systematics32(1), 219-249.

Zimmerman, G. T., & Laven, R. D. (1987). Effects of forest fuel smoke on dwarf mistletoe seed germination. The Great Basin Naturalist, 652-659.

Posted on Thursday, February 22, 2018 at 8:39 AM

When Wildfire Hits the Ranch: Lessons Learned from the Thomas Fire

Reposted from the Fire Adapted Communities Learning Network blog


Posted on Friday, February 9, 2018 at 2:42 PM
  • Author: Matthew Shapero
Tags: Matthew Shapero (1), range (1), Thomas Fire (1), wildfire (40)

Testing Sonoma Ash and Air for Fire-Formed Pollutants

 When fires ripped through suburban subdivisions in Santa Rosa last October, they may have done more than reduce homes to ashes. By incinerating all kinds of materials — insulation, electronics, furniture, cleaning products, pesticides — at very high temperatures, they could have created unknown or previously unrecognized health hazards in the smoke and ash. Researchers from the University of California, Davis, are trying to figure out just what is in that ash and air.

“What we're interested in looking for are transformation products of household products that have burned in the fires,” said Gabby Black, a fourth-year graduate student in agricultural and environmental chemistry at UC Davis.

According to Tom Young, professor in the Department of Civil and Environmental Engineering and Black's faculty advisor, the health hazards these compounds pose are not yet known.

“Conventional assessments rely on things that we already know are pollutants, such as industrial chemicals,” Young said. “But we don't know what new chemicals might have been created from combustion.”

The Northern California Fire and Health Impacts project, also known as “Wildfires and Health: Assessing the Toll in NorthWest California” (WHAT NOW-California) is led by Irva Hertz-Picciotto, professor of public health sciences and director of the UC Davis Environmental Health Sciences Center. In addition to sampling ash and air, researchers from the center plan to survey residents of Napa, Sonoma and other Northern California counties affected by the fires or the smoke. The survey asks about how the fires have affected them and other household members, including their experiences as well as their health before, during and after the fires.

Black, who was born and raised in Sonoma, has collected ash samples from a series of sites burned by the Tubbs Fire in October, from wildland in Robert Louis Stevenson State Park into the city of Santa Rosa.

In addition, researcher Keith Bein and colleagues from the UC Davis Air Quality Research Center plan to regularly collect air samples from these sites as the area recovers from the fires. While the fires were still burning, Bein's team collected samples of smoky air in the Bay Area and Davis. But for years to come, they expect, dust in the burned area will contain particles of fire ash. The researchers will look specifically at airborne particles less than 2.5 microns in size that can penetrate deep into the lungs.

Air and ash samples will be analyzed by the latest techniques that can generate high-resolution profiles of hundreds or thousands of molecules in a sample. The researchers will compare the samples to existing databases and also look for new compounds.

“This was a very unique type of fire, an urban wildfire,” Bein said. “We know what wildfire smoke is composed of, but we have no idea what will be in this — we expect it to be very different.”

The air quality team has set up a mobile air sampling unit powered by an electric vehicle. The system can carry out 24 hours of continuous sampling in a remote area with no accessible power. They plan to begin monthly sampling in the Sonoma and Napa areas this spring. In future, Bein hopes that the mobile unit can be deployed quickly into an affected area.

The project has received initial funding from the UC Davis Environmental Health Science Center, sponsored by the National Institute for Environmental Health Sciences. Black is supported by an NSF graduate student fellowship. 

Posted on Monday, January 29, 2018 at 3:23 PM
  • Author: Andy Fell
Tags: ash (1), Gabrielle Black (1), Irva Hertz-Picciotto (1), public health (1), Sonoma (1), wildfire (40), WUI (2)
Focus Area Tags: Environment Health

Next 5 stories | Last story

Webmaster Email: cecentralsierra@ucdavis.edu