Central Sierra
University of California
Central Sierra

Green Blog

Redwood symposium calls for action and collaboration

>

The Coast Redwood Forests in a Changing California Science Symposium was held June 21-23, 2011, at UC Santa Cruz with just under 300 registrants in attendance. Participants ranged in background from graduate level students to university forestry and natural resource faculty, land managers, conservation groups, public agencies, and land trust members. The symposium was strategically held in Santa Cruz, near the Southern end of the redwood region. Designed to present the state of our knowledge about California’s coast redwood forest ecosystems and sustainable management practices, this symposium was built on earlier redwood science symposia held in Arcata, CA in June, 1996 and in Santa Rosa, CA in March, 2004. The symposium was jointly organized by the forestry programs at UC Berkeley, Cal Poly San Luis Obispo, and Humboldt State University, and partially supported by a grant designed to encourage research and outreach collaboration between the University of California and the California State University systems.

Attendees participated in a day long field trip and two days filled with opening sessions, concurrent presentations on research and management case studies, and a poster session. An ongoing theme of the symposium was the need for action and collaboration from all directions, including public and private land owners and managers, as well as academics and policy makers.

Symposium participants mingle and network during the evening poster reception

During the opening panel, local historian Sandy Lydon gave a synopsis of the settlement of the area and how the redwoods will always have a special history in the region. He recounted stories from his boyhood about roaming through the forests. He reminded the audience to take time from their schedules to spend time in the forests, and to urge their children to play outside to develop an appreciation for the outdoors and cultivate their imaginations.

Ruskin Hartley, Executive Director and Secretary of Save the Redwoods League, questioned what it means to save the redwoods today and argued that buying and placing land in public ownership is not enough. He believes the next 100 years will focus on restoring forests collaboratively between public and private entities. Hartley called on the audience to set “audacious goals and take collaborative actions.” He maintained that nature does not develop boundaries and that in moving forward, we should focus on a shared set of goals so that public and private land can progress simultaneously. In a time of climate change, the lines we draw on maps become increasingly irrelevant, instead we need a new paradigm to “think about building resilience and adaptability to climate change into the system to benefit both public and private owners.”

Ron Jarvis, Home Depot’s Vice President of Sustainability talked candidly about the role of environmental sustainability practices and policies as part of the home improvement retailer’s business model. He noted that when he began in the sustainability department he undertook a two year long project to understand where every sliver of wood from over 9,000 products originated to ensure sustainable wood practices. Recently, Home Depot sent a memo to their current vendors asking them to supply Home Depot with the names of their “green products.” The green product inventory exceeded over 10,000 products, yet when Jarvis’s team investigated further they deemed only about 2,000 to be worthy of the green standard. Jarvis showed that products today, because of packaging or brand names, may seem green, but the consumer must really investigate what they are buying. Jarvis hopes that in his position he can take some of that burden off of the consumer so that the majority of products that reach Home Depot shelves have already passed the test.

Opening speaker panel: Steve Sillett, Sandy Lydon, Ruskin Hartley, Ron Jarvis

During the concluding ceremony on the future of research in the redwood region, the panel, as well as audience members, recognized the need for more communication among those working with redwoods to spread research findings and best practices. Inspired by the concurrent presentations and research presented at the poster session, participants were looking for a way to stay in touch and collaborate - as Hartley noted in the opening session is crucial for the next steps of redwood growth and preservation. 100% of participants who completed the follow up survey are excited to network and collaborate at similar events, meaning there are opportunities to further enhance the redwood and green movements.

Proceedings of the symposium are anticipated to be available in early Fall 2011 to document the various studies in the literature.

For a full summary of the 2011 Redwood Symposium, please visit: The Forest Research and Outreach Blog.

For ways you can get involved or if you have ideas for collaboration: Like us on Facebook and join the discussion!

Posted on Wednesday, August 3, 2011 at 10:38 AM
  • Author: Jaime Adler
Tags: redwood (3), sustainable (3)

UCCE studies a Dutch invention for regenerating trees and shrubs on oak woodland

>

An elderberry growing in a Waterboxx.
For more than 100 years, Californians have been concerned about inadequate regeneration of trees and shrubs on oak woodlands. Firewood harvesting, agricultural conversions and intensive grazing threaten to convert woodlands into shrub fields or bare pastures.

The beauty of rolling hills studded with majestic oaks, other trees and shrubbery isn't the only reason to regenerate vegetation. The trees and shrubs create a much more hospitable habitat for a wide assortment of wildlife. Oak woodland vegetation also protects the quality of California water. The majority of the state’s water flows through oak woodlands in streams and rivers that support fisheries, farms and cities. Plants and trees anchor the soil, preventing erosion and stream sedimentation.

One of the difficulties ranchers face in regenerating trees is supplying water for seedling establishment. Ranches often stretch for thousands of acres. Hauling water to remote sites or installing irrigation can be prohibitively expensive.

 

Natural resources advisor Royce Larsen, left, and rancher George Work discuss the growth of an elderberry in a Waterboxx.

Third-generation San Miguel rancher George Work heard about a new tree establishment invention from Holland – a Groasis Waterboxx. Over the years, Work has collaborated with UC Cooperative Extension on oak planting projects and consulted with UCCE experts about squirrel diseases, ranch animal vaccinations and pasture management. He turned to UCCE natural resources advisor Royce Larsen for his thoughts on the Waterboxx.

“Because of Royce here, our Cooperative Extension agent, he provided a little added incentive when I wanted to try this thing,” Work said. “Royce said, ‘I’ll help you.’ Well, that was enough to get the job done.”

Work, Larsen and UC Cooperative Extension natural resources specialist Bill Tietje installed 10 Waterboxxes, which cost about $30 each, in a remote area of the 12,000-acre Work Ranch in southern Monterey County. Other plant regeneration methods – including traditional drip irrigation and tree teepees – were also installed for comparison.

The Waterboxx is a round plastic hat box-shaped reservoir that fits around the seedling trunk. When the seedling is planted, the reservoir is filled with about four gallons of water. A rope on the bottom continuously wicks moisture to the plant roots.

The box is covered with an inward-slanting corrugated top that cools during the night and channels condensed dew and fog into the reservoir, keeping it full of water. The Waterboxx provides a protective barrier around the trunk and shades and cools the soil beneath. At the Work Ranch, the plants are also enclosed in bale-wire fence to keep out wildlife poking around for water or hungry for tender green growth.

“The trees are doing surprisingly well," Larsen said. "In just three months, the seedlings have grown more than two feet."

Larsen said he will continue monitoring the project to see if the self-watering system can establish trees. If successful, UC scientists may study the Waterboxx more thoroughly in a replicated research design in Monterey County, San Luis Obispo County and other parts of the state.

See the components of a Waterboxx in the video clip below.

Read a transcript of the video.

Posted on Wednesday, July 27, 2011 at 8:23 AM

It only takes a spark

>

The Las Conchas fire that recently consumed nearly 137,000 acres in Los Alamos, N.M., serves as a reminder of how quickly fire can move if given fuel. I can’t light a barbecue with matches and lighter fluid, but a small ember drifting on the wind can find so many ways to burn down people’s homes if given the right conditions.

Removal of vegetation near Los Alamos National Laboratory, which is part of the UC system, created a buffer and helped spare the lab from the Las Conchas fire, which came within 50 feet. Creating a buffer is one of many preventive measures that can be taken to protect property from wildfires.

In a wildfire-prone area, even if you have a house with a concrete tile roof and noncombustible siding, an ember landing on landscape mulch, igniting plants around the home or floating into a vent on the house or under decks may set the house ablaze, warns a UC Cooperative Extension fire expert.

“From years of observing the aftermath of fires and testing fire-resistant building materials, we have developed a much better understanding about what happens,” says Steve Quarles, UC Cooperative Extension wood performance and durability advisor.

 

Parts of house that may make it vulnerable to wildfire embers.

Quarles lists six priority areas for evaluating the vulnerability of homes in fire hazard zones: the roof, vents, landscape plants, windows, decking and siding. For details on how you can reduce the threat of wildfire to your home, visit Quarles' Homeowner's Wildfire Mitigation Guide.

 

Rubber mulch, shown flaming, produced the highest flames and temperatures of the eight mulches tested.
As a result of his most recent study, Quarles is now advising homeowners living in wildfire-prone areas to consider the type of landscape mulch they use and where they place the mulch.

“We know that the zone within about five feet of the home is very important to home survival during a wildfire,” Quarles says.

Landscape mulch provides many benefits to a garden, but Quarles and his colleague Ed Smith, University of Nevada Cooperative Extension natural resource specialist, found that many types of mulch are capable of catching fire and burning. Within five feet of a house, they recommend placing only rock, pavers, brick chips or well-irrigated, low-combustible plants such as lawn or flowers.

Quarles and Smith have published a new manual comparing the relative susceptibility of eight mulch treatments to igniting and burning. To download a free copy of “The Combustibility of Landscape Mulches,” visit the UC Fire Center website.

The scientists tested eight types of landscape mulches, shown in this test plot.
The scientists tested eight types of landscape mulches, shown in this test plot.

The scientists tested 8 types of landscape mulches, shown in this test plot.

Posted on Wednesday, July 13, 2011 at 11:53 AM
Tags: building construction (1), fire (5), landscape (5), mulch (2), Steve Quarles (1), wildfire (31)

Frolicking fat floodplain fish feed furiously

>

A very wet spring brought a good deal of water to the floodplains this year—good news for juvenile salmon that thrive in this habitat. Floodplains — such as the Yolo and Sutter Bypass areas and the Cosumnes River floodplains — provide a link for juvenile salmon between the gravel bedded rivers where they hatched and the ocean where they will spend the next one to five years.

Although salmon may only use the floodplain for a month or two, this could mean the difference between success and failure in their long journey to the ocean and back again. When juvenile salmon spend time on the floodplain, they grow faster than those that use only the river channel during their migration to the ocean (Sommer et al. 2001, Jeffres et al. 2006).  Because of the increased growth, the juveniles are larger when they head out to sea; they can survive better by swimming faster and being more able to avoid predators.

What makes a floodplain a good place for rearing salmon?  First of all, it needs to be connected to the river.   This sounds obvious, but most of the floodplain habitat in California is isolated behind levees and only gets flooded during extreme high water events when the levees are overtopped or breached. The reason that the levees are there is to protect housing and agricultural land (orchards, vineyards, etc.), which doesn’t allow for regular inundation of floodwaters.

Juvenile Chinook salmon reared on a restored floodplain on the Cosumnes River (right) and in the main channel. Photo: Jeff Opperman
Despite these challenges, some floodplains are still active in California and studies of these active floodplains are changing our minds about their value.  Multi-purpose floodplains such as the Yolo Bypass and Cosumnes River Preserve, for example, provide flood protection, seasonal agricultural land for annual crops, and restored habitat for many species, not just salmon.

Why are these multi-purpose floodplains better than the river channel for rearing salmon?  As cold floodwater enters a floodplain from the river, it spreads out, slows down and deposits sediment. Throughout this process, the water also warms slightly.  This is essentially the priming of the productivity pump that will ultimately feed the juvenile salmon for the next couple of months.  As the water slows, clears and warms, phytoplankton and algae begin to grow.  Populations of animals that feed on the fast-growing plant life, such as zooplankton and other aquatic invertebrates boom.  These animals comprise the main food of juvenile salmon on the floodplains.

Because salmon are cold blooded, water temperature it is an important component to floodplain suitability.  If water is too cold, juvenile salmon are lethargic and growth is slow.  If the water is too warm it causes increased metabolic demands and reduced dissolved oxygen, inhibiting growth and increasing mortality.  Fortunately for California salmonids, out-migration is in the spring when temperatures are generally moderate.  The timing of spring high flows onto floodplains allows for ideal temperatures for juvenile salmonids compared to the relatively cold water in the main river channel.  When temperatures are good and food is abundant, juvenile salmon can grow at impressively fast rates, especially when compared to fish using the main river channel.

The combination of complex physical processes and ecological function is what separates the floodplain from the river corridor in the eyes of juvenile salmon.  Leveed river channels provide little complexity and less than ideal growing conditions during the annual spring out-migration.  When juvenile salmon have access to complex floodplain habitats where temperatures are good and food resources are abundant, they will grow to larger sizes and thus be able to survive better than fish that remained in the main river channel.

So, next time you catch a big healthy salmon, thank your local floodplain.

Further Reading:

Jeffres, C., J. Opperman and P. Moyle (2008), “Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river,” Environmental Biology of Fishes 83 (4): 449-458.

Sommer, T., B. Harrell, M. Nobriga, R. Brown, P. Moyle, W. Kimmerer and L. Schemel (2001), “California’s Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife and agriculture,” Fisheries 26 (8): 6-16.

Posted on Friday, July 1, 2011 at 2:42 PM
  • Posted By: Trina Wood
  • Written by: Carson Jeffres, fish ecologist, UC Davis Center for Watershed Sciences

Residential runoff still contains banned chemicals

Pesticides that have not been sold at the retail level for years are still regularly found in residential runoff water, according to research in Sacramento and Orange counties by UC scientists. So called “legacy pesticides” are probably old products that homeowners still have on their garage shelves and are still using to control pests.

An earlier study by the California Department of Pesticide Regulation and the UC Integrated Pest Management Program found that 60 percent of pesticides sold to consumers are for ant control. For that reason, UC Cooperative Extension specialist in landscape horticulture Loren Oki of UC Davis and UC Cooperative Extension water resources/water quality advisor Darren Haver focused on ant control pesticides in their residential runoff research project. The scientists collected 830 water samples from the storm drains in four Sacramento County neighborhoods and four Orange County neighborhoods between 2006 and 2010.

“In Sacramento County, we trained a team of about 25 volunteer UC Master Gardeners to collect the samples,” Oki said. Orange County samples were collected by Haver and his staff. All the samples were sent to UC Riverside for analysis.

“Pesticides that have been off the market since 2004 are still found in the water,” Oki said. “We found organophosphates – diazinon and chlorpyrifos – in differing amounts, typically more in Orange County than Sacramento County. We also found a fairly new pesticide, fipronil, in most of our water samples.”

The scientists also noted random spikes in the amount pesticides in runoff water, unconnected with storms or other conditions, which suggested that they were directly associated with particular pesticide applications in the neighborhoods.

There are several ways homeowners can help prevent contamination of the California water supply. For one, dispose of old pesticides properly. Most cities and counties have programs for disposal of household hazardous waste.

When using pesticides, Oki suggests residents carefully read the label and use common sense.

“Don’t put pesticides on impervious surfaces, like concrete walkways and driveways,” he said. “Don’t put pesticides in garden areas where runoff might be generated. That runoff will carry the pesticides with it.”

Residents can also minimize the amount of water runoff from the property. Oki suggests reducing irrigation and targeting the water application properly. In addition, promote soil infiltration by promoting soil health.

“If you don’t generate runoff, you won’t have pesticides running off too,” Oki said.

Residential runoff can convey pesticides into water supplies.
Residential runoff can convey pesticides into water supplies.

Posted on Wednesday, June 29, 2011 at 9:22 AM
Tags: Darren Haver (2), Loren Oki (2), pesticides (4)

First storyPrevious 5 stories  |  Next 5 stories | Last story

 
E-mail
 
Webmaster Email: cecentralsierra@ucdavis.edu