Central Sierra
University of California
Central Sierra

Posts Tagged: Samantha Ying

New dust sources resulting from a shrinking Salton Sea have negative ecological and health impacts

Salton Sea. Photo courtesy of NASA
UC Riverside study shows soils once submerged under the sea and airborne particulate matter are high in sodium and selenium

Scientists at UC Riverside investigating the composition of particulate matter (PM) and its sources at the Salton Sea have found that this shrinking lake in Southern California is exposing large areas of dry lakebed, called playa, that are acting as new dust sources with the potential to impact human health.

“Playas have a high potential to act as dust sources because playa surfaces often lack vegetation,” said Roya Bahreini, an associate professor of environmental sciences, who led the research project. “Dust emissions from playas increase airborne PM mass, which has been linked to cardiovascular disease, respiratory disease, and mortality.”

Study results appeared recently in Environmental Science and Technology.

Bahreini's team set out to test whether emissions from playas change the composition of PM10 (particulate matter with diameters up to 10 microns) near the Salton Sea. The team assessed the composition of playa soils (recently submerged underneath the Salton Sea), desert soils (located farther from the sea), and PM10 collected during August 2015 and February 2016.

They found that dust sources contributed to about 45 percent of PM10 at the Salton Sea during the sampling period while playa emissions contributed to about 10 percent. Further, they found that playa emissions significantly increased the sodium content of PM10.

Roya Bahreini is an associate professor of environmental sciences at UC Riverside.
“Increase in the sodium content of PM10 can affect the ecosystem when the sodium-rich particles deposit downwind and change the natural balance for soils and agricultural lands or when these particles form clouds,” Bahreini said. “Currently, the primary concern for PM emissions from playa is the contribution to total concentration of PM10, which regardless of composition, is an irritant and can have negative respiratory effects.”

Her team also found that playa soils and PM10 are significantly enriched in selenium relative to desert soils.

Bahreini explained that selenium can be a driver of aquatic and avian toxicity. “Additionally, higher selenium enrichments in PM10 during summertime suggest that selenium volatilization from the playa may become an important factor controlling the selenium budget in the area as more playa gets exposed,” she said.

Alexander L. Frie, a graduate student in environmental sciences and the first author of the research paper, urges that the Salton Sea be paid close attention since, although it is widely considered a large ecological disaster, with no serious monitoring and remediation efforts the sea may also create a human health crisis for the surrounding area.

Alexander L. Frie, a graduate student in environmental sciences and the first author of the research paper, at the sampling site.
“Although our results indicate playa emission may not be especially toxic when compared to other dust particles, increased emissions from a shrinking sea will reduce the quality of life of the residents within the Imperial Valley and other downwind regions,” he said.

Samantha C. Ying, an assistant professor of environmental sciences and a coauthor on the paper, stresses that monitoring the increase in dust sources over time is necessary to quantify its contribution to local health problems.

“Our study shows that the shrinking Salton Sea is contributing to dust sources in the region,” she said. “Even considering just the small area of playa that is exposed now, the contributions are significant.”

Another concern the researchers point out is that water that is currently diverted from the Colorado River and directed into the Salton Sea is scheduled to end before 2018. The resultant decrease of inflow into the sea will likely cause a decline in water level, exposing more playa, and therefore emitting more dust.

“With more playa being exposed, we expect total PM10 concentrations to increase and human exposure to these particles in downwind areas will also increase,” Bahreini said. “Therefore implementing any project, for example, creating shallow water pools over the playa, that limits formation of salt crusts on the playa will be valuable.”

Bahreini, Frie and Ying were joined in the study by Justin H. Dingle, a graduate student in Bahreini's lab.

The study was funded by UCR Regents' Faculty Development Award, USDA National Institute of Food and Agriculture, a UCR Provost Research Fellowship, the U.S. Geological Survey and ANR's California Institute for Water Resources.

Read more: 

KPBS, David Wagner New Study Traces Airborne Dust Back to Shrinking Salton Sea

The Desert Sun, Ian James Studying dust around the Salton Sea, scientists find initial answers

Palm Desert Patch The Hidden, Potentially Deadly, Dangers of The Salton Sea

 

 

Posted on Tuesday, August 8, 2017 at 10:36 AM
  • Author: Iqbal Pittalwala

Fighting drought with soil

Soil is an often overlooked tool to fight drought.
A team of University of California scientists recently received a $1.69 million grant to use several UC agricultural research stations to study an often overlooked tool to fight the drought: soil.

The team, led by Samantha Ying, an assistant professor of environmental sciences at UC Riverside, received the grant from the University of California Office of the President.

The funding will allow for the establishment of the University of California Consortium for Drought and Carbon Management (UC DroCaM), which will design management strategies based on understanding soil carbon, the soil microbiome and their impact on water dynamics in soil.

The researchers will conduct field and lab research on microbiological, biophysical, and geochemical mechanisms controlling soil formation and stability under different row crops (tomatoes, alfalfa, wheat), farming practices (carbon inputs and rotations) and irrigation methods (furrow and flood, microirrigation).

Samantha Ying, an assistant professor of environmental sciences at UC Riverside.
Information on mechanisms will be integrated into a regionally-scalable predictive model to describe soil carbon dynamics and estimate the response of agricultural systems to drought.

Field research will initially be conducted at three UC Research and Extension Centers (Kearney, West Side and Desert) the Russell Ranch Sustainable Agriculture Facility near UC Davis.

Recommendations will then be made for broader monitoring and field experiments throughout the state based on input gained from local growers and citizens at workshops at the agricultural research stations. Ultimately, the hope is to expand and involve all nine research and extension centers from the Oregon border to the Mexican border.

“Having agricultural research stations throughout the state is a huge part of this project,” Ying said. “It is going to help us create one of the best research centers in the country focused on soil and drought.”

There is also a public engagement component. Citizens will be recruited to participate in workshops to learn how to monitor and sample their local soils. Information will then be imputed into an online soils database that will help create a map of the biodiversity of agricultural soils in California.

Ying's collaborators are: Kate Scow and Sanjai Parihk (UC Davis); Eoin Brodie and Margaret Torn (UC Berkeley); Asmeret Berhe and Teamrat Ghezzehei (UC Merced); and Peter Nico and William Riley (Lawrence Berkeley National Laboratory).

The grant is one of four awards totaling more than $4.8 million from University of California President Janet Napolitano's President's Research Catalyst Awards.

Posted on Monday, May 2, 2016 at 12:25 PM
 
E-mail
 
Webmaster Email: cecentralsierra@ucdavis.edu