Central Sierra
University of California
Central Sierra

Posts Tagged: UC Davis

Fighting drought with soil

Soil is an often overlooked tool to fight drought.
A team of University of California scientists recently received a $1.69 million grant to use several UC agricultural research stations to study an often overlooked tool to fight the drought: soil.

The team, led by Samantha Ying, an assistant professor of environmental sciences at UC Riverside, received the grant from the University of California Office of the President.

The funding will allow for the establishment of the University of California Consortium for Drought and Carbon Management (UC DroCaM), which will design management strategies based on understanding soil carbon, the soil microbiome and their impact on water dynamics in soil.

The researchers will conduct field and lab research on microbiological, biophysical, and geochemical mechanisms controlling soil formation and stability under different row crops (tomatoes, alfalfa, wheat), farming practices (carbon inputs and rotations) and irrigation methods (furrow and flood, microirrigation).

Samantha Ying, an assistant professor of environmental sciences at UC Riverside.
Information on mechanisms will be integrated into a regionally-scalable predictive model to describe soil carbon dynamics and estimate the response of agricultural systems to drought.

Field research will initially be conducted at three UC Research and Extension Centers (Kearney, West Side and Desert) the Russell Ranch Sustainable Agriculture Facility near UC Davis.

Recommendations will then be made for broader monitoring and field experiments throughout the state based on input gained from local growers and citizens at workshops at the agricultural research stations. Ultimately, the hope is to expand and involve all nine research and extension centers from the Oregon border to the Mexican border.

“Having agricultural research stations throughout the state is a huge part of this project,” Ying said. “It is going to help us create one of the best research centers in the country focused on soil and drought.”

There is also a public engagement component. Citizens will be recruited to participate in workshops to learn how to monitor and sample their local soils. Information will then be imputed into an online soils database that will help create a map of the biodiversity of agricultural soils in California.

Ying's collaborators are: Kate Scow and Sanjai Parihk (UC Davis); Eoin Brodie and Margaret Torn (UC Berkeley); Asmeret Berhe and Teamrat Ghezzehei (UC Merced); and Peter Nico and William Riley (Lawrence Berkeley National Laboratory).

The grant is one of four awards totaling more than $4.8 million from University of California President Janet Napolitano's President's Research Catalyst Awards.

Posted on Monday, May 2, 2016 at 12:25 PM

Drought is impacting California’s wildflowers

Harrison PNAS
Native wildflowers in California are losing species diversity after multiple years of drier winters, according to a study from the University of California, Davis, which provides the first direct evidence of climate change impacts in the state's grassland communities.

The study, covered in TIME, LA Times, and elsewhere, was published in the journal Proceedings of the National Academy of Sciences. It's based on 15 years of monitoring about 80 sampling plots at McLaughlin Reserve, part of UC Davis' Natural Reserve System.

"Our study shows that 15 years of warmer and drier winters are creating a direct loss of native wildflowers in some of California's grasslands,” said lead author Susan Harrison, a professor in the Department of Environmental Science and Policy and a member of UC Agriculture and Natural Resources' Conservation Biology workgroup. “Such diversity losses may foreshadow larger-scale extinctions, especially in regions that are becoming increasingly dry.”

The researchers confirmed that drought-intolerant species suffered the worst declines.

Global trend

Similar trends have been found in other Mediterranean environments, such as those of southern Europe, bolstering the case for increased climate change awareness in the world's semi-arid regions.

Taken together with climate change predictions, the future grassland communities of California are expected to be less productive, provide less nutrition to herbivores, and become more vulnerable to invasion by exotic species, the study said.

The researchers expect these negative to cascade up through the food web—affecting insects, seed-eating rodents, birds, deer and domesticated species like cattle, all of which rely on grasslands for food.

Rescue effect may be too late

Grasses and wildflowers may be able to withstand the current drying period through their extensive seed banks, which can lie dormant for decades waiting for the right conditions to germinate. 

However, California's drought is expected to intensify in the coming decades, so this rescue effect may end up being too late for some species.

Author: Kat Kerlin

Posted on Wednesday, July 15, 2015 at 4:00 PM
Tags: California (1), climate (2), drought (2), Susan Harrison (1), UC Davis (22), wildflowers (1)

Uncommon conundrum: When removing invasive species threatens endangered ones

The California clapper rail — a bird found only in the bay — has come to depend on an invasive salt marsh cordgrass for nesting habitat. (Photo: Robert Clark)
Can't live with them, can't live without them — at least not at first when it comes to the relationship between some invasive and endangered species.

Efforts to eradicate invasive species increasingly occur side by side with programs focused on recovery of endangered ones. But what should resource managers do when the eradication of an invasive species threatens an endangered species?

In a recent study published in the journal Science, researchers at the UC Davis examine that conundrum now taking place in the San Francisco Bay. The California clapper rail — a bird found only in the bay — has come to depend on an invasive salt marsh cordgrass, hybridSpartina, for nesting habitat. Its native habitat has slowly vanished over the decades, largely due to urban development and invasion by Spartina.

Their results, picked up by TIME magazine, showed that, rather than moving as fast as possible with eradication and restoration, the best approach is to slow down the eradication of the invasive species until restoration or natural recovery of the system provides appropriate habitat for the endangered species.

“Just thinking from a single-species standpoint doesn't work,” said co-author and UC Davis environmental science and policy professor Alan Hastings. “The whole management system needs to take longer, and you need to have much more flexibility in the timing of budgetary expenditures over a longer time frame.”

The scientists combined biological and economic data for Spartina and the clapper rail to develop a modeling framework to balance conflicting management goals, including endangered species recovery and invasive species removal, given budgetary constraints.

While more threatened and endangered species are becoming dependent on invasive species for habitat and food, examples of the study's specific conflict are rare. The only other known case where the eradication of an invasive species threatened to compromise the recovery of an endangered one is in the southwestern United States, where a program to eradicate tamarisk was canceled in areas where the invasive tree provides nesting habitat for the endangered southwestern willow fly-catcher.

“As eradication programs increase in number, we expect this will be a more common conflict in the future,” said co-author and UC Davis professor Ted Grosholz.

The scientists used data from Grosholz's lab as well as from the Invasive Spartina Project of the California Coastal Conservancy in their analysis.

Spartina alterniflora was introduced to the San Francisco Bay in the mid-1970s by the Army Corps of Engineers as a method to reclaim marshland. It hybridized with native Spartina and invaded roughly 800 acres. Eradication of hybrid Spartina began in 2005, and about 92 percent of it has been removed from the bay. The cordgrass has also invaded areas of Willapa Bay in Washington state, where efforts to eradicate it are nearly complete, and invasive Spartina has been spotted and removed from Tomales Bay, Point Reyes and Bolinas Lagoon in California.

The study, led by UC Davis postdoctoral fellow Adam Lampert, was funded by the National Science Foundation Dynamics of Coupled Natural and Human Systems Program.

Co-authors include UC Davis environmental science and policy professor James Sanchirico and Sunny Jardine, a Ph.D. student at UC Davis during the study and currently assistant professor at University of Delaware. 

“This work is significant in advancing a general, analytical framework for cost-effective management solutions to the common conflict between removing invasive species and conserving biodiversity,” said Alan Tessier, program director in the National Science Foundation Division of Environmental Biology.

 

Posted on Wednesday, June 11, 2014 at 6:44 AM
Tags: Clapper Rail (1), conservation (1), endangered (1), invasive (1), Spartina (1), UC Davis (22)

Biodigester turns campus waste into campus energy

Campus and community food and yard waste will be put inside large, white, oxygen-deprived tanks. Bacterial microbes in the tanks feast on the waste, converting it into clean energy that feeds the campus electrical grid. (graphic: Russ Thebaud/UC Davis)
More than a decade ago, Ruihong Zhang, a professor of biological and agricultural engineering at the University of California, Davis, started working on a problem: How to turn as much organic waste as possible into as much renewable energy as possible.

Last week, on Earth Day, the university and Sacramento-based technology partner CleanWorld unveiled the UC Davis Renewable Energy Anaerobic Digester (READ) at the campus' former landfill. Here, the anaerobic digestion technology Zhang invented is being used inside large, white, oxygen-deprived tanks. Bacterial microbes in the tanks feast on campus and community food and yard waste, converting it into clean energy that feeds the campus electrical grid.

“This technology can change the way we manage our solid waste,” Zhang said. “It will allow us to be more economically and environmentally sustainable."

It is the third commercial biodigester CleanWorld has opened using Zhang's technology within the past two years and is the nation's largest anaerobic biodigester on a college campus.

The system is designed to convert 50 tons of organic waste to 12,000 kWh of renewable electricity each day using state-of-the-art generators, diverting 20,000 tons of waste from local landfills each year. It is expected to reduce greenhouse gas emissions by 13,500 tons per year.

The READ BioDigester encompasses several of the university's goals: reducing campus waste in a way that makes both economic and environmental sense, generating renewable energy, and transferring technology developed at UC Davis to the commercial marketplace.

The biodigester will enable the more than 100 million tons of organic waste each year that is currently being landfilled in the U.S. to be converted to clean energy and soil products. The READ BioDigester is a closed loop system, moving from farm to fork to fuel and back to farm. Whatever is not turned into biogas to generate renewable electricity can be used as fertilizer and soil amendments — 4 million gallons of it per year, which could provide natural fertilizers for an estimated 145 acres of farmlands each day.

Nearly half of the organic waste, or feedstock, needed to operate the biodigester to full benefit will come from UC Davis dining halls, animal facilities and grounds. CleanWorld is working with area food processing and distribution centers to supply the remaining amount. Meanwhile, UC Davis will earn 100 percent of the project's green energy and carbon credits and receive all of the electricity generated.

Anaerobic digestion is an age-old process. However, Zhang's patented technology made it more efficient — capable of eating a broader variety and bigger quantity of waste, turning it into clean energy faster and more consistently than other commercial anaerobic biodigesters.

View a video about the UC David biodigester here:

(This blog post is condensed from a UC Davis news release about the biodigester.)

Additional information:

Posted on Wednesday, April 30, 2014 at 6:34 AM

College students create wildlife habitats in a Wild Campus program

Students prepare to plant oak seedlings.
Put together a group of hard-working, do-good college students who care about environmental issues, and you end up with a really “Wild Campus.” At UC Davis, students formed the student-run Wild Campus organization two years ago to conserve wildlife in the greater UC Davis area.

Working with campus experts (such as faculty and staff in the Department of Wildlife, Fish and Conservation Biology) and local environmental and conservation organizations, the volunteer students are improving the habitats for local wildlife and engaging the public in hands-on activities.

This is an extraordinary program that gives the students real-world environmental management skills, along with leadership opportunities and communications experience. Professor John Eadie, Department of Wildlife, Fish and Conservation Biology at UC Davis, said of the Wild Campus program, “Hands-on activity is a huge part of the educational experience.”

Students plant tules in Putah Creek.
In the UC Davis Putah Creek Riparian Reserve, the students are establishing wildlife habitat areas and monitoring populations of amphibians, birds, fish, insects, mammals, and reptiles. They will record the changes over the course of time. Recent work in the riparian reserve (aka “the living classroom”) has included planting native oak seedlings, and installing tule plants to provide protection for the Western Pond Turtle, a species of concern.

A past project — Build a Wild Home Day — involved working with the UC Davis Arboretum on a successful public outreach program to build bird and bat boxes for installation on campus. (Great photos of this program are on the group’s Facebook page.)

The Wild Campus organization has a large cadre of eager and dedicated students who are improvising and making the most of limited resources. However, they are in need of donated field equipment (used equipment is fine) and financial contributions.

Visit the Wild Campus website and Facebook page for a feel-good look at what these ambitious students are doing to improve the environment, along with ways you can help them succeed.

A juvenile Western Pond Turtle.
A healthy turtle habitat, a few months after planting.

Posted on Tuesday, December 10, 2013 at 10:59 AM

Next 5 stories | Last story

 
E-mail
 
Webmaster Email: cecentralsierra@ucdavis.edu